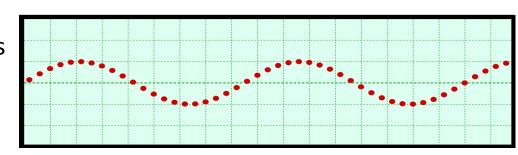
Waves - I

Waves - I

Types of waves


Wave equation & parameters

Speed of a progressive wave

Principle of superposition

Wave

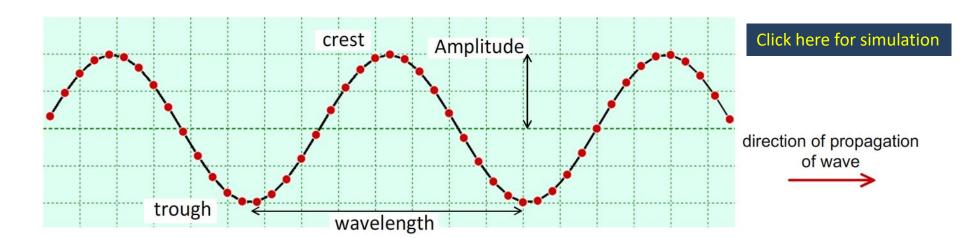
A periodic disturbance that propagates itself in space is called a wave.

Types of waves

Based on movement of particles

- Longitudinal waves
- Transverse waves

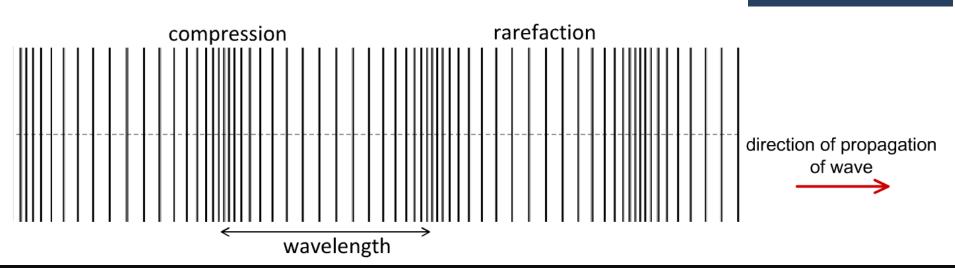
Based on requirement of a medium


- Mechanical waves (require a medium for propagation)
- Non-mechanical waves (do not require a medium for propagation)

Based on propagation of energy

- □ Progressive waves (non-zero transfer of energy)
- Stationary waves (zero net transfer of energy)

Transverse waves


- These are the waves in which direction of oscillations of particles of the medium is perpendicular to the direction of propagation of the wave.
- Examples: waves in a stretched string, waves of the surface of water, electromagnetic waves (non-mechanical transverse waves)
- In transverse waves crests are the points of the positive amplitude and troughs are the points of the negative amplitude.
- \Box The minimum distance between two points in phase is called wavelength (λ)
- \Box Transverse wave equation is given by $y = A \sin(\omega t \pm kx \pm \phi)$

Longitudinal waves

- These are the waves in which direction of oscillations of particles of the medium is parallel to the direction of propagation of the wave.
- Examples : sound waves
- In longitudinal waves compressions (points of the maximum pressure) and rarefactions (points of minimum pressure) are formed.
- \Box The minimum distance between two points in phase is called wavelength (λ)
- lacksquare Longitudinal wave equation is given by $X=A \sin(\omega t \pm k \, x \pm \phi)$

Click here for simulation

The wave equation

$$y = A \sin(\omega t \pm kx \pm \phi)$$

y: instantaneous position of a point/particle in a wave

A: amplitude of oscillation of parameter/particle in a wave

 ω : angular frequency of oscillation of parameter/particle in a wave

t: instant of time

k: wave vector / propagation constant

x: position of a particular point in space containing the wave

 ϕ : initial phase / phase constant / epoch

$$\omega = \frac{2\pi}{T}$$
 $T = \frac{1}{n}$ $k = \frac{2\pi}{\lambda}$

($\omega t + kx$) : for wave propagating along negative x-axis

($\omega t - kx$) : for wave propagating along positive x-axis

($\omega t \pm kx \pm \phi$): instantaneous phase of a particular point

Propagation constant or wave constant (k)

General equation of a wave with zero initial phase is given by the relation

$$y = A \sin(\omega t \pm kx)$$

Initial wave pattern is obtained by considering t = 0. Therefore

$$y = A \sin(kx)$$

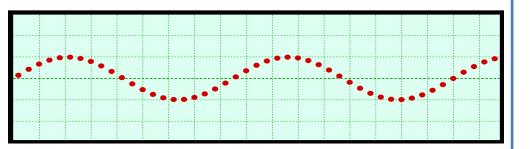
Sine function is periodic after every change in phase angle of 2π . Therefore position (y) of particles are same at points located at x , $2\pi x$, $4\pi x$, $6\pi x$... $n2\pi x$

$$y = A \sin(kx + n2\pi)$$

$$y = A \sin k \left(x + \frac{n2\pi}{k} \right)$$

Least distance between any two points having same displacement (y) is obtained by taking n = 1. Therefore

$$y = A \sin k \left(x + \frac{2\pi}{k} \right)$$


Wavelength (λ) is <u>defined</u> as the least distance between the particles that are in phase. Therefore

$$\lambda = \frac{2\pi}{k}$$

$$k = \frac{2\pi}{\lambda}$$

Velocity of a wave

When a wave propagates in space, shape of wave about a point (say a crest) remains constant during the wave propagation.

This implies that the phase of the wave equation remains constant

$$(\omega t - kx) = constant$$

With passage of time, position (x) of a point with a particular phase propagates in the direction of wave while its phase remains constant.

Differentiating the above relation w.r.t. time we get

$$\omega \frac{\mathsf{d}}{\mathsf{d}t}(t) - k \frac{\mathsf{d}}{\mathsf{d}t}(x) = 0$$

$$k v = \omega$$

$$v = \frac{\omega}{k}$$

Using $\omega = 2\pi n$ and $k = 2\pi/\lambda$ we get

$$v = n\lambda$$

Velocity of waves (in different cases)

Velocity of a wave depends on the medium and the conditions in which the wave propagates.

Velocity of wave is, in general, given by

$$v = n\lambda = \frac{\omega}{k}$$

n: frequency of the wave

 λ : wavelength of the wave

 ω : angular frequency

k: wave constant

Velocity of transverse waves in a stretched string is given by

$$v = \sqrt{\frac{T}{\mu}}$$

T: tension in the string

 μ : linear density (mass per unit length) of the string

Velocity of longitudinal waves in a medium is given by

$$v = \sqrt{\frac{\gamma P}{d}}$$

P: pressure of the medium

d : density of the medium

 γ : ratio of specific heats of the medium

sigmaprc@gmail.com
sigmaprc.in